| Wish | Knew How To ...

Begin Object Oriented
Programming With Xojo

July 2015 Edition (1.0)

By Eugene Dakin

—




Table of Contents

Chapter 1 - Introduction to Object Oriented Programming.......cccceccveeeiriiieeiniiieeeeniieee s sieeeeennne 6
BEING the ArCNITECE...uiiiiiiiiie e e e e s e e s s abe e e e s nabeeeesnanees 7
(O =T3P 7
Y Y G 10T O] o [=Tot S PSPPI 9
Set and Get ObJECT Data.....cuuuiiiiiiiiie et e e e e aaee s 10
(D lo] Al @] o =T - | o] SHN PSP TRTRTORRURRPRPRORt 12
Chapter 2 = IMETNOAS ...eviee e e e e s st e e e snbae e e esbbaeessseeeeeanns 14
Y1007 o] L3\ =1 o o T PRSP 14
V=T aYoTe I T =Yg 0= o <] oSSR 15
RETUIN MELhOA ValUE.... ..ottt e e e e er e e e s e e e e enaaeeeenns 17
Chapter 3 — Constructor and DESTIUCTON ......c.vvvvieeieieiieiiiieeeee e eeerreree e e e eesabere e e reeeeeeeeennraeeeeeees 19
(0] 111 { {1 o ] SUUR T TP P TSP 19
CONStrUCTOr Param et ers. .o e 21
(011 a1 g0 [oi (o] GOV =T d (o T=Te [ 10V =TSP 22
D T=E o U ol o] SRRSOt 25
(00 =Y o] (= o I g Tor= [ o 1Y ] F= 1 o] o F SO P URRROPPPP 28
R olo o1 N 28
ENCAPSUIGTEA PrOPEITY cooeiiiiiiiiiieiie ettt eecerre e e e e e e bbb e e e e e e eesabbsbbrrereeeeesseassreneeeeens 28
(0o Yo (< s T 1] o[ a1 = L Lol ISP TRRROPPPP 31
[a] a1 a1 = T g 1ol O @ | RS 32
2 Tl o Tl o T =T o A 1 = USSR 36
Chapter 6 — POIYMOIPRISI cooiiiiieiiiiiiiie ettt e e et e e e e e e e e eabbbereeeeeeseansraneeeeens 38
Chapter 7 — INtrOSPECION . .uviiiieiieee ettt et e e e ae e e s st a e e e e ssbaeeeesbraeesssbeeeennns 42
Retrieve Object Properties and ValUES .........oovuiiiiiiiiiiiiiiieec ettt 42
Copy Data at RUNTIME ... e e 46
Chapter 8 — EXtENS @Nd ASSIZNS ....uuiiieieeiieiciiieeee e et e e e e e eebrre e e e e e e e e attarreaeeeaaeeensraaeeeeens 49
=] o L3R E SR 49
FAN =4 o L O OSSO PPPPPPPPN 52
Chapter 9 - BoXing and UNDOXING ...ccoovuiiiiiiiiiiiie ettt e e siiee e s ssaae e e s saraee s saseeeesnns 55
LV 1 LU Y 1 SRR 55
2O =Y = g Yol T Y7 o YT TSP TPPPRRPRIPRN 55
[0 4T o 1ol | PP PPPPPPRPN 56

24 o] T ) TSP OPPPRRPPPUPN 56



610 oo )t o V- TP PUPURPPTUPN 56
TaaY o] Lol o = To ) (] o= USSP 57
EXPIICIT BOXING cooieitrieiiei ettt e e e et e e e e e s e abbar e e e e eeeaeeeeesnsbaraereeeesesasssrraneeeeens 57
IMPLICIE UNDOXING «evvvvviiiiieiiiiciiiieeiee ettt ee et e e e e e s e abbr e e e e e eees s eessbssaereeeeeesassrreneeeeens 58
(o ol A U Ta oo D] o= SO 58
Chapter 10 — Setters aNd GEELEIS ...uuvviviiiiieiciireeeee e et e e e e sebb bbb e e e e e e s senanaraneeeeens 61
YU - o USSPt 65
Yol ot 211~ Y U 65
TaaY a0l =] o] [ O U RROPT TP 65
Chapter 11 — Overloading and OVEITIdING ....ccuvveeeeiieiiiiiiiieeeeeeeeeiiirereeeeeeeeriarereeesereeeeeeenasraeeeeeens 66
(0)V7=Y 4 ToFTo I o V-SRI 66
(01T ¢ 4 1o oV - U P PR PP UURURRRRR 68
Chapter 12 — DeIEEATE . .uvveeeeeee ettt ettt e et e e e e s et r e e e eeeeeesesasbaereeeeesseantranereeens 71
SIMPIE DRIEEATE ooeeieiiirteeeee et e e e e e e e e e se b b e e s seeaeeeeeebbrrreeeeeeeenanrrrrees 71
DLl [T L (R = 1= [ L1 (<] TSP 73
Delegate RETUIN VAlUE .....uuiiiiiiiieeeiee ettt e e st e e e s s esaba e e e s s bnaeessaaneeesnns 75
ADSTract POINtEr DelEGAE ..ocuuuiiii it e s e e e e e e nees 76
Class Abstract POINtEr DEIEGAte ......cciviuiiiiiiiiiee et abaee s 80
Chapter 13 — Class INTErfACE ..o et e e e e e e raeeeeeeas 82



Chapter 4 - Encapsulation

Encapsulation is a common word when Object Oriented Programming is used. Encapsulation
has all of the objects data hidden within the object and can only be accessed through the
methods of the class. Here are some of the many benefits to hiding (making properties Private)
which allows the validation of changes to the data, protecting the data from unauthorized
access, and allows the data to be consistent.

Scope

With classes there are three types of scope in Xojo: Public, Protected, and Private. Scope is also
called the ‘visibility’ of the entity (eg. Property, Method, etc.).

Scope is very important when working with encapsulation. The general definitions of scope are:
a) Public — All methods, Windows, and Objects can see and likely access the entity (i.e.
Property) within a class.
b) Protected — The class and any subclasses can access and modify the property/method.
c) Private — Only the class can access and modify the property/method.

None of the properties/methods are given access from outside of the program.

Encapsulated Property

This example will make a property (Speed) which is invisible to the outside program and is only
accessible by calling methods in the Class by setting the property to Private.

Figure 14. Example 4-1: Encapsulating a Property Screen Grab

File Edit

Making an Object (Encapsulation) Car Values

Speed: 15

The object is made and property is set with a private scope, meaning only a class method can

change the property value. Lets show how this program is made.



The first step is to create a blank desktop application and drag-and-drop a class

Figure 15. Example 4-1: Encapsulated Property Screen Grab

File Edit View Inset Project Window Help
14
> e - 0O

Insert  Back Forward Run  Build Help Feedback Library Inspector
v (& = —)

3 - < > —_—

< Bampled1-01 @ @
CONTENTS Project items o
> &l Aep £ Window
Sl WiodoM) B MenuBar

¥ @ Controls

Aa Labell @ Module
» [ MainMenuBar & Folder
@ Class

BUILD SETTINGS @ Container Control

. Shared & File Types Set

O osx @ Class Interface

[) Windows Report

7 Linux

= . £ Toolbar v

(¥ This Computer No Editor = —

N.
QAN

Class1 was renamed to ClsCar and a property called Speed was added to the car. When the
properties scope was changed to Private, then a red dot appears to the right of the property.

Figure 16. Adding a Private Class Property

File Edit View Insert Project Window Help
) ov
Q¢ % @ ]
Insert  Back  Forward Run  Build Help  Feedback Library Inspector
(QFiter | [ " s Y
£ Example04-01 <« > | Speed as Integer
2mp P egs Name [Speed
v @ Controls | /
[ Groupgoxi Type [integer
Aa Labell
Aa Labels Default
Aa Lbispeed con [ 3l
v [ PushButton1
“k Acion
» B8 MainMenuBar
v @ ascar
» (=) Methods
v () Properties
Q) Speed ()

A private property can only be changed by the methods within the class. Two methods with
public properties were created that can be accessed outside of the class.

Code 24. Example 4-1: Class Constructor Method

Function Constructor()




//Set PRIVATE Default Class Property value
Me.Speed = 15 //Car has zero speed
End Function

Using our knowledge from the previous chapter, a method called a Constructor is added to the
class and is automatically called when a new object from a class is created. Code in the
Constructor method sets the speed of the object to 15.

Another method is created to update the Window label from the class.

Code 25. Example 4-1: Class UpdatelLabels Method

//Show MyFastCar Settings in Window
Window1.LblSpeed.Text = Me.Speed.ToText

This is the part of the method where the value in the speed variable is shown on a label in the
window.

To make all of the methods and property work together, the following code is added to the
pushbutton action event.

Code 26. Example 4-1: Create Encapsulated Object

//Create a Fast Car

Dim MyFastCar as New ClsCar

//Property values are set with the method
MyFastCar.UpdateLabels()

When the MyFastCar variable is created from the Class ClsCar, then the Constructor fires and
places a default value into the Speed property. The Class UpdateLabels method is then called to
show the property value on the label in Window1 which has the value of 15.

This example shows how to encapsulate (hide) a property so that only methods in the property
can change or be updated by public methods in the class.



Index

Abstract, 76 Dot Operator, 12
Abstract Pointer, 76 entity, 28
Abstract Pointer Delegate, 76 Examples
abstraction, 76 01-01 Create Class Properties, 9
01-02 Create Object, 10

Accessor, 65 01-03 Set Object Propeties, 11

) 01-04 Dot Operator, 12
Assigns, 52 02-01 Using a Method, 14

02-02 Method Parameter, 16
02-03 Return Method Value, 17
03-01 Constructor Method, 20

Base Class, 36

Boxing, 56
03-01 Object Constructor, 20
called, 14 03-02 Constructor Parameter, 21
03-03 Constructor Overload, 23
CanRead, 44 03-03 Constructor Overloading, 23
03-04 Destructor Method, 26
CanWrite, 44 04-01 Encapsulated Property, 30
05-01 Inherited Class, 35
Class, 7

05-02 Class IsA Comparison, 36

06-01 Polymorphic Method, 39

07-01 Introspection Show Properties, 44
07-02 Introspection Copy Object, 46
08-01 Extends Function, 50

Class Interface, 82

Constructor, 19

Constructor Super, 34 08-02 Assigns Keyword, 52
09-01 Boxing and Unboxing, 59
coupled, 76 10-01 Use Computed Get and Set, 63
11-01 Method Overloading, 66
Delegate, 71 11-02 Method Overriding, 69

12-01 Simple Delegate, 73

12-02 Delegate Parameter, 74
12-03 Delegate Return Value, 76
12-04 Abstract Delegate, 79
12-05 Class Abstract Delegate, 81
13-01 Class Interface, 87

Delegate Invoke, 73
Delegate Reference, 72

Delegate Reference Pointer, 72



Explicit, 56

Explicit Boxing, 57
Explicit Unboxing, 58
Extends, 50

Get, 63
GetProperties, 44
Getter Propery, 61
GetTypelnfo, 44
immutable, 65
Implicit, 56

Implicit Boxing, 57
Implicit Unboxing, 58
Inheritance, 31
Instance, 9

Interface Class, 82
Introspection

ArrayInfo, 45
Attributelnfo, 45
Attributelnfolmp, 45
ClassInfo, 45
Constructorinfo, 45
Constructorinfolmp, 45
Enumlinfo, 45

GenericPrimitiveTypelnfo, 45

GetType, 45
Memberlinfo, 45
MethodBase, 45
MethodInfo, 45
MethodInfolmp, 45

ObjectClassInfo, 45
Parameterinfo, 45
Parameterinfolmp, 45
PointerTypelnfo, 45
Propertylnfo, 45
Propertylnfolmp, 45
Structurelnfo, 45
Typelnfo, 45
Variantinfo, 45
Invoke Delegate, 73

Invoked, 14

IsA, 36, 37

IsPublic, 44

Me, 15

Member Methods, 12
Member Variables, 12
Method Members, 12
Mutator, 65

NaN, 67

Not a Number, 67
Object, 9
Overloading, 22, 66
Overriding, 68
Parameters, 14
Parent Class, 36
pointer, 76

Private, 28

Property



Get, 61
Set, 61
Propertyinfo, 44

Protected, 28

Public, 28

Reference Delegate, 72
Reference Type, 55
Return, 14

Return Type, 14

Scope, 28

Private, 28
Protected, 28

Public, 28
Set, 63

Set Object Property, 10
Setter Property, 61
Super, 31
Super.Constructor, 34
Typelnfo, 44

Unboxing, 56
uncoupling, 76

Value Type, 55

Variable Members, 12




The ‘I Wish | Knew’ series contains technical data and advice that makes sense and contains
practical and numerous examples with explanations to allow you to ease into the steep
programming curve. You can extend Xojo applications today!

This book “l Wish | Knew How to ... Begin Object Oriented Programming with Xojo” shows you
how to program with object in the three major operating systems. All code has been tested on
Xojo 2015 r2.2 with Windows 8.1, OS X Yosemite 10.10.4, and Ubuntu 15.04 32-bit versions.

The book is written as a guide and reference to Xojo programmers who program Desktop
Applications.

There are 12 chapters and contains over 90 pages with 29 example programs.
Examples include topics such as Polymorphism, Introspection, Extends, Explicit Unboxing,
Overriding, and definitions of common terms used in OOP. Many screenshots have been added

to show the results of the code with an index to help find topics quickly.

This is one of many books at Great White Software. This book can be purchased at http://great-
white-software.com/rblibrary/ where many great Xojo resources are available.

Happy programming!

Eugene

Eugene Dakin MBA, Ph.D., P.Chem., is an author of Xojo and Real Studio reference materials
and has many years of experience in the programming industry. Another great reference book
is | Wish | Knew How To ... Program Win32 Declares for Windows.

ISBN: 978-1-927924-12-9



